

Soil moisture biases and their correction in CanSIPS operational forecasts

Bertrand Denis, Juan-Sebastian Fontecilla Canadian Meteorological Centre (CMC), Dorval, Québec

Bill Merryfield, Slava Kharin, John Scinocca, Woo-Sung Lee Canadian Centre for Climate Modelling and Analysis (CCCma), Victoria, BC The Canadian Seasonal to Interannual Prediction System (CanSIPS)

- Developed at CCCma
- Operational at CMC since Dec 2011
- 2 models CanCM3/4, 10 ensemble members each
- Forecasts initialized at the start of every month
- Hindcast verification period = 1981-2010
- Forecasts contribute to NMME and WMO/APCC/IRI ensembles
- Forecast range = 12 months

Reference: Merryfield et al., MWR, 2013

CanSIPS contribution to NMME

CanSIPS initialization

CanSIPS initialization

CanSIPS Land initialization

Direct atmospheric initialization through 4D assimilation of 6-hourly *T*, *q*, *u*, *v* using incremental analysis update (~nudging)

initialization through response to model atmosphere

www.eoearth.org/view/article/152990

Land surface variables, e.g. soil moisture and snow, are not directly constrained; their states are determined by model response to previously assimilated "weather systems" from 3D atmospheric global analyses.

Data Sources: Hindcasts vs Operational

Field	Data Source during hindcast	Data Source during operations
3D atmospheric variables	ERA40; ERA interim	СМС
SST	monthly NCEP ERSST (1979-1981) weekly NCEP OISST (1981-present)	daily CMC
Sea ice concentration	monthly HadISST (1979-present)	daily CMC
3D ocean temperature	monthly NCEP GODAS ocean analysis	daily NCEP GODAS ocean analysis* *pending availability of CMC NEMOVAR analysis

Change in atmospheric data source: Effect on soil moisture

- Plots below compare soil moisture in first forecast month for ERA vs CMC-based initialization
- VFSM = volume fraction of soil moisture (%)
- Anomalies are relative to 1981-2010 hindcast climatology

—— CanCM3
—— CanCM4

Canada mean soil moisture anomalies in July initialized forecasts

July lead 0 soil moisture anomalies

Solution: Modify CMC-based assimilation runs using bias correction method of Kharin & Scinocca (GRL 2012)

- 1. Extend ERA-based assimilation runs to mid-2012
- 2. From these runs make 6-hourly soil moisture time series from 1 Jan 2010
- 3. Repeat CMC-based assimilation runs, assimilating soil moisture from ERA-based runs from step 2 using:

 | March | CMC-based | CMC-based

usual model equations
$$\boxed{\frac{\partial X}{\partial t} = F(X) - \frac{1}{\tau}(X - X_R)}$$
 assimilation terms

4. Construct cyclostationary bias correcting forcing ("G") from soil moisture assimilation term:

$$G = -rac{1}{ au}\overline{(X-X_R)}^{AC}$$
 mean annual cycle

The bias correcting term "G" is not a relaxation term. For a given grid point, it only depends on the day of the year.

Solution: Modify CMC-based assimilation runs using bias correction method of Kharin & Scinocca (GRL 2012)

5. Repeat CMC-based runs again w/o soil moisture assimilation but with this bias correction

$$\frac{\partial X}{\partial t} = F(X) + \boxed{G}$$

6. Anticipated result: soil moisture drift corrected

VFSM anomaly, glb_avg

Result: Soil moisture restored to hindcast climatology in operational forecasts

Canada mean soil moisture anomalies in July initialized forecasts

Correction implemented operationally beginning with June 2013-initialized forecast

Effects of soil moisture biases on precipitation forecasts Mean differences in JJA forecasts for 2010-12 (lead 0)

Dots indicate statistical significance according to t test

July 2012 temperature anomaly forecast

ERA Interim verification

ERA initialization

CMC initialization

corrected CMC initialization

Summary

- Change from ERA reanalysis for atmospheric assimilation in hindcasts to CMC analysis in operational forecasts led to accumulating soil moisture deficit
- This has been fixed using the bias correction procedure of Kharin & Scinocca (GRL 2012)
- Soil moisture in hindcasts is OK
- Soil moisture in operational forecasts produced after June 2013 inclusive is OK
- Soil moisture in operational forecasts produced from Nov 2011 to May 2013 inclusive suffers from this bias

Thanks!

